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Technology Transfer

The only significant technology transfer involving an Army Research Lab took place when I was contacted by Dr. Betsy Rice to 
help in speeding up the parallel implementation of the following computation (sparse matrix – sparse matrix multiplication) in a 
loop:















for  i = 1: max_iter


if (trace(A) > threshold)



A = A*A


else



A = 2*A – A*A


end



end






 Analyzing the graphs represented by the matrices A in the above loop, we observed that all the matrices A of order n can be 
reordered by the same permutation matrix P such that PT A P = E, where E is all zero except of a first dense diagonal block C 
of order r much less than n. This allowed us to perform all the multiplications in the loop using the high data-locality dense 
matrix multiplications involving the matrix C, and retrieving A via the reverse ordering: A = P E PT. 





This approach resulted in significant savings. For example, for a loop of 17 iterations, the speed improvements realized by our 
scheme over the sparse matrix-sparse matrix multiplication kernel in the DOE Trilinos project for a matrix A of small size n = 
23,552 was 2.4 if we use a single node of 80 cores. However, for a matrix A of a modest size of 565,238, we realized a speed 
improvement of 24 if we use the same single node with 80 cores, and a speed improvement of 10.4 if we use a cluster of 8 
nodes in which each node contains 24 cores. The advantage of our approach would yield much higher speed improvements for 
matrices with much larger size. 





Dr. Rice was pleased with the outcome of this collaboration and stated:





“This will help to enable a critical capability within the enterprise for multiscale material research at arl





Thanks to everyone!





Betsy”
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I.	Introduction	
	
Sparse	 matrix	 computations	 arise	 in	 numerous	 computational	 science	 and	
engineering	applications	as	well	as	in	network	analysis	and	data‐based	simulations.	
Further,	 sparse	 matrix	 computations	 represent	 a	 major	 impediment	 to	 realizing	
high	 performance	 on	 parallel	 computing	 platforms.	 Designing	 sparse	 matrix	
primitives	and	algorithms	capable	of	achieving	high	parallel	scalability	on	platforms	
consisting	of	a	single	node	with	many	cores,	or	thousands	of	multicore	nodes	is	the	
main	objective	of	our	research	effort.	In	this	project,	we	addressed	designing:		
	
(1)	 Tools	 for	 sparse	matrix	 primtives	 such	 as	 sparse	matrix‐vector	multiplication	
(and	 sparse	 matrix‐multivector	 multiplication)	 –	 “matvecs”,	 and	 sparse	 matrix	
reordering	 designed	 to	 enhance	 both	 the	 realization	 of	 effective	 preconditioning	
techniques	for	solving	large	linear	systems,	as	well	as	high	performance	“matvecs”;		
	



(2)	 A	 hybrid	 parallel	 sparse	 linear	 system	 solver	 that	 is	 much	 more	 robust	 than	
current	 preconditioned	 iterative	 solvers,	 and	 much	 more	 scalable	 than	 currently	
available	sparse	direct	linear	system	solvers.	
	
(3)	 A	 parallel	 sparse	 symmetric	 eigenvalue	 problem	 solver	 for	 obtaining	 either	
extreme	or	interior	eigenpairs.	
	
We	 believe	 that	 our	 kernels	 and	 solvers	 fill	 a	 critical	 need	 for	 researchers	 and	
developers	of	 engineering	applications	 in	which	 robustness	 and	 speed	 are	vital	 for	
the	large‐scale	simulations	to	be	conducted.		
	
	
II.	PSPIKE:	a	parallel	hybrid	sparse	linear	system	solver	
	
This	algorithm	was	motivated	by	some	of	the	early	work	of	the	PI,	e.g.	see	[SaKu78],	
[PoSa06],	and	[MaSS09].	This	solver	consists	of	three	critical	primitives/algorithms:	
(a)	 sparse	matrix	 reordering,	 (b)	 determination	 of	 an	 effective	 preconditioner	 for	
Krylov	subspace	methods,	and	(c)	designing	and	implementing	parallel	schemes	for	
solving	systems	involving	the	preconditioner	in	each	outer	Krylov	iteration.	
	

(a) Sparse	matrix	reordering:	 	this	reordering	consists	of	two	steps	–	the	first	is	
nonsymmetric	 reordering	 that	 removes	 zeros	 from	 the	 diagonal	 and	
maximizes	 the	 magnitude	 of	 the	 product	 of	 the	 diagonal	 elements;	 the	
second	 is	 a	 symmetric	 reordering	 that	 brings	 as	 many	 of	 the	 heaviest	
elements	 (i.e.	 off‐diagonal	 elements	 of	 largest	magnitudes)	 as	 close	 to	 the	
diagonal	as	possible.	Our	nonsymmetric	reordering	is	similar	to	subroutine	
MC64	 of	 the	 Harwell	 Subroutine	 Library	 (HSL),	 while	 our	 symmetric	
reordering	 is	 based	 on	 the	 Fiedler	 vector	 of	 the	 corresponding	 weighted	
Laplacian.	 In	 this	sense	 it	 is	similar	 to	subroutine	MC73	of	HSL	except	 that	
we	 use	 our	 own	 parallel	 TraceMIN	 eigensolver	 (perfected	 and	 extended	
through	 this	 grant)	 for	 obtaining	 the	 Fiedler	 vector	 rather	 than	 the	
multilevel	 eigensolver	 used	 in	 MC73	 which	 yields	 low	 performance	 on	 a	
variety	 of	 parallel	 architectures.	 Currently,	 however,	 we	 are	 also	
experimenting	 with	 another	 graph	 partitioning	 scheme	 that	 enhances	 the	
success	of	block	Jacobi	preconditioners.	
	

(b) Extraction	 of	 the	 preconditioner:	 the	 above	 reordering	 creates	 a	 central	
“generalized	band”	that	can	be	used	as	a	preconditioner	for	an	outer	Krylov	
subspace	 iteration.	 We	 use	 the	 term	 “generalized	 band”	 so	 as	 to	 allow	 a	
central	band	that	consists	of	overlapped	diagonal	blocks	in	which	each	block	
is	 a	 sparse	matrix.	 Such	 a	 construct	 allows	 the	 encapsulation	 of	many	 off‐
diagonal	 element	 so	 that	 the	 reordered	 sparse	 coefficient	matrix	A’	 can	be	
expressed	 as	 A’	 =	 M	 +	 E,	 in	 which	 M	 is	 the	 preconditioner	 consisting	 of	
overlapped	 diagonal	 blocks,	 and	 E	 is	 the	 low‐rank	 sparse	matrix	 that	 lies	



outside	M.	In	this	case,	the	number	of	outer	Krylov	subspace	iterations	will	
be	proportional	to	the	rank	of	E.	

	
(c) Solving	 systems	of	 the	 form	M	z	 =	 r:	 in	 order	 to	 realize	maximum	parallel	

scalability	of	our	hybrid	solver	PSPIKE,	we	need	to	solve	systems	involving	
the	 preconditioner	 with	 maximum	 parallel	 efficiency.	 Here,	 we	 used	 our	
“tearing”	 method,	 e.g.	 see	 [NaMS10].	 This	 algorithm	 proved	 to	 be	 very	
effective	on	parallel	architectures.	It	gives	rise	to	solving	a	“balance	system”	
whose	size	is	equal	to	the	sum	of	the	overlaps	in	M.	If	the	balance	system	is	
formed	explicitly	and	solved	using	a	direct	method,	then	this	part	will	be	the	
only	 impediment	 to	 high	 parallel	 scalability	 on	 large‐scale	 parallel	
computing	platforms.	On	a	cluster	of	few	multicore	nodes	(e.g.	4	or	8	nodes),	
however,	 the	 impediment	 to	 high	 parallel	 performance	 is	 minimized.	 On	
large	 clusters	 of	many	multicore	 nodes,	 the	 balance	 system	 is	 not	 formed	
explicitly	and	 is	 solved	using	a	preconditioned	Krylov	subspace	method.	 In	
such	 iterative	 schemes,	 all	 that	 is	 needed	 is	 the	 result	 of	 multiplying	 the	
coefficient	matrix	of	the	balance	system	with	a	vector	as	well	as	computing	
residuals	corresponding	to	different	iterates.	Both	of	these	are	derived	from	
the	 direct	 solutions	 of	 the	 sparse	 systems	 that	 constitute	 the	 overlapped	
diagonal	 blocks	 of	 the	 preconditioner	 M.	 The	 last	 critical	 component	 is	
solving	sparse	linear	systems	(one	per	overlapped	diagonal	block)	efficiently	
so	as	to	obtain	only	certain	components	of	the	solution	taking	advantage	of	
the	sparsity	of	the	right	hand‐side.	

	
Extensive	 numerical	 experiments	 have	 shown	 that	 on	 large	 clusters	 of	 multicore	
nodes,	 our	 parallel	 solver	 PSPIKE	 is	 as	 robust	 as	 sparse	 direct	 solvers,	 and	more	
robust	as	well	as	much	more	scalable	on	large	number	of	multicore	nodes	than	LU‐	
and	 algebraic	 multigrid‐preconditioned	 Krylov	 subspace	 methods.	 This	 has	 been	
demonstrated	 in	 previous	 annual	 reports	 of	 this	 grant.	 Further,	 we	 have	
demonstrated	that	our	hybrid	solver	PSPIKE	can	be	much	faster	than	direct	sparse	
solvers	 like	Pardiso,	MUMPS	and	WSMP	 if	we	need	only	 to	achieve	 solutions	with	
modest	relative	residuals	(e.g.	in	the	range	of	10‐2	to	10‐5).	
	
As	mentioned	above,	we	have	created	a	version	of	PSPIKE	(PSPIKE+)	 in	which:	(i)	
we	 use	 a	 reordering	 scheme	 that	 enhances	 the	 effectiveness	 of	 block	 Jacobi	
preconditioners	 and	 simultaneously	 providing	 us	 with	 the	 benefits	 of	 weighted	
spectral	reordering,	and	(ii)	form	the	balance	system	explicitly	and	solve	it	directly.	
Appendix	 1	 contains	 a	 draft	 of	 the	 paper	 to	 be	 submitted	 soon	 to	 the	 Journal	 of	
Computational	and	Applied	Mathematics.	
	
	
III.	TraceMIN:	a	parallel	sparse	symmetric	eigenvalue	problem	solver	
	
This	 algorithm	was	 developed	 by	 the	 PI	 in	 1982,	 e.g.	 see	 [SaWi82],	 based	 on	 the	
trace	 minimization	 property	 that	 given	 the	 generalized	 symmetric	 eigenvalue	



problem	A	x	=	µ	B	x	where	A	is	symmetric	and	B	is	symmetric	positive	definite,	then	
minimizing	the	trace	of	(YT	A	Y)	subject	to	the	constraint	that	YT	B	Y	=	Ip,	where	Y	is	a	
block	 of	 p	 independent	 columns,	 and	 Ip	 is	 the	 identity	 of	 order	 p,	 results	 in	 the	
following:	min	[	tr(YT	A	Y)]	=	∑	µk,	the	sum	of	the	p	smallest	eigenvalues	near	zero.	
After	 almost	 a	 decade	 and	 half,	 the	 Jacobi‐Davidson	 algorithm	 [SlVo96]	 was	
introduced	 for	 the	 nonsymmetric	 eigenvalue	 problem	 without	 a	 proof	 of	
convergence	but	which	is	based	on	the	trace	minimization	property	(used	by	the	PI)	
when	 the	 eigenvalue	 problem	 is	 symmetric.	 	 Later,	 the	 PI	 extended	 TraceMIN	 to	
make	use	of	the	expanding	subspace	strategy	adopted	in	Jacobi‐Davidson,	resulting	
in	the	solver	TraceMIN‐Davidson,	e.g.	see	[SaTo00].	More	recently,	 investigators	at	
Sandia	 National	 Labs	 launched	 the	 Trilinos	 project	 aimed	 at	 implementation	 of	
sparse	linear	system	and	sparse	eigenvalue	problem	solvers	including:	(i)	LOBPCG	
[Knya01,	 Knya07],	 (ii)	 BKS	 [Stew00,	 ZhSa08],	 and	 (iii)	 RTR	 [AbBG07,	 ABGS04],	
which	 is	 based	 on	 our	 TraceMIN	 scheme.	 In	 this	 project,	 we	 implemented	 both	
TraceMIN	 and	TraceMIN‐Davidson	 on	 a	 cluster	 of	multicore	 nodes	 and	 compared	
them	with	those	of	the	Trilinos	project	(Anasazi	 library	[Anas15]).	The	robustness	
exhibited	 by	 TraceMIN	 and	 TraceMIN‐Davidson	 is	 due	 to	 the	 fact	 that	 unlike	
Lanczos‐	 or	 Arnoldi‐based	 eigensolver,	 our	 algorithms	do	not	 require	 solutions	 of	
linear	systems	that	arise	in	each	outer	eigensolver	iteration	to	have	very	low	relative	
residuals.	Further,	the	robustness	and	superior	parallel	scalability	of	TraceMIN	and	
TraceMIN‐Davidson	 rely	 on	 efficient	 algorithms	 for	 solving	 the	 saddle‐point	
problems	 that	 arise	 from	 the	 above	 constrained	 minimization	 of	 the	 trace	 of	 a	
section	of	the	matrix	A.	In	addition	to	comparing	the	performance	of	our	algorithms	
with	 those	 currently	 in	 the	 Trilinos	 project,	 we	 also	 compare	 our	 solver	 with	 an	
eigensolver	adopted	 recently	by	 Intel’s	Math	Kernel	Library	 (MKL)	–	a	 solver	 that	
relies	on	contour	integration,	e.g.	see	[Poli09,	and	Poli14].	Further,	we	also	provide	
comparisons	with	the	Jacobi‐Davidson	algorithm	implemented	in	the	SLEPc	library	
[SLEP14].		
	
Performance	 results	 of	 our	 sparse	 nonsymmetric	 linear	 systems	 and	 symmetric	
eigenvalue	problem	solvers	are	contained	in	Appendix	2.	
	
IV.	Education	and	training	
	
Two	PhD	graduate	students	associated	with	project,	one	(Alicia	Klinvex)	supported	
by	 a	 federal	 fellowship	 and	 one	 (Yao	 Zhu)	 supported	 via	 this	 grant,	 have	 gained	
extensive	 experience	 in	 designing	 parallel	 algorithms	 for	 sparse	 matrix	
computation.	 Alicia	 Klinvex	 will	 graduate	 later	 this	 month	 (May	 2015).	 She	 has	
already	accepted	a	postdoctoral	fellowship	from	Sandia’s	Trilinos	project.	Based	on	
the	work	she	has	done	with	me	in	developing	the	parallel	TraceMIN	and	TraceMIN‐
Davidson,	the	Trilinos	project	has	recently	adopted	both	of	them	as	eigensolvers	in	
the	Anasazi	library.	Yao	Zhu,	has	been	working	on	the	PSPIKE	hybrid	linear	system	
solver,	 and	my	 co‐author	 of	 the	 paper	 draft	 attached	 to	 this	 report.	 Yao	 Zhu	will	
graduate	 this	 August	 and	 has	 already	 an	 offer	 as	 a	 technical	 analyst	 from	 a	Wall	
Street	investment	firm.	



	
V.	Technology	Transfer	
	
The	only	significant	technology	transfer	involving	an	Army	Research	Lab	took	place	
when	 I	 was	 contacted	 by	 Dr.	 Betsy	 Rice	 to	 help	 in	 speeding	 up	 the	 parallel	
implementation	 of	 the	 following	 computation	 (sparse	 matrix	 –	 sparse	 matrix	
multiplication)	in	a	loop:	
	
	
	
	

	 	 for  i = 1: max_iter 
   if (trace(A) > threshold) 
    A = A*A 
   else 
    A = 2*A – A*A 
   end 
  end 
	 	 	
	Analyzing	the	graphs	represented	by	the	matrices	A	in	the	above	loop,	we	observed	
that	all	the	matrices	A	of	order	n	can	be	reordered	by	the	same	permutation	matrix	
P	such	that	PT	A	P	=	E,	where	E	is	all	zero	except	of	a	first	dense	diagonal	block	C	of	
order	r	much	 less	 than	n.	This	allowed	us	to	perform	all	 the	multiplications	 in	the	
loop	using	the	high	data‐locality	dense	matrix	multiplications	involving	the	matrix	C,	
and	retrieving	A	via	the	reverse	ordering:	A	=	P	E	PT.		
	
This	approach	resulted	in	significant	savings.	For	example,	for	a	loop	of	17	iterations,	
the	speed	improvements	realized	by	our	scheme	over	the	sparse	matrix‐sparse	matrix	
multiplication	kernel	in	the	DOE	Trilinos	project	for	a	matrix	A	of	small	size	n	=	23,552	
was	2.4	if	we	use	a	single	node	of	80	cores.	However,	for	a	matrix	A	of	a	modest	size	of	
565,238,	we	realized	a	speed	improvement	of	24	if	we	use	the	same	single	node	with	80	
cores,	and	a	speed	 improvement	of	10.4	 if	we	use	a	cluster	of	8	nodes	 in	which	each	
node	contains	24	cores.	The	advantage	of	our	approach	would	yield	much	higher	speed	
improvements	for	matrices	with	much	larger	size.		
	
Dr.	Rice	was	pleased	with	the	outcome	of	this	collaboration	and	stated:	
	
“This will help to enable a critical capability within the enterprise for multiscale 
material research at arl 
 
Thanks to everyone! 



 
Betsy” 
 
 
VI.	Publications	
	

 Books	
o Parallelism	 in	 Matrix	 Computations,	 E.	 Gallopoulos,	 B.	 Philippe,	

and	A.	H.	Sameh,	Springer	(to	appear	September	2015).	
 Journal	Papers	

o “PSPIKE+:	a	family	of	parallel	hybrid	sparse	linear	system	solvers”,	
Y.	Zhu,	and	A.	H.	Sameh,	to	be	submitted.	

o “A	 direct	 tridiagonal	 solver	 based	 on	 Givens	 rotations	 for	 GPU	
architectures”,	 I.	 Venetis,	 A.	 Kouris,	 A.	 Sobyczyk,	 E.	 Gallopoulos,	
and	 A.	 H.	 Sameh,	 Parallel	 Computing,	 2015,	 pp.	 1‐16	 (in	 press).		
(my	 co‐authors	 forgot	 to	 include	 my	 ARO	 grant	 in	 the	
acknowledgement)	

o “Parallel	 implementations	 of	 the	 trace	 minimization	 scheme	
TraceMIN	 for	 the	 sparse	 symmetric	 eigenvalue	 problem”,	 A.	
Klinvex,	F.	Saied,	and	A.	H.	Sameh,	Computers	&	Mathematics	with	
Applications,	Vol.	65,	issue	3,	pp.	460‐468,	2013.	

	
VII.	Conclusion	
	
The	development	of	reliable	high‐quality	software	containing	the	above	solvers	has	
been	 an	 important	 goal	 to	 enable	 the	 realization	 of	 various	 simulations	 in	
computational	mechanics	 in	much	 shorter	 times.	 Codes	 for	 the	 above	 solvers	 are	
readily	available.	We	plan	to	complete	the	documentation	and	user	manuals	of	two	
codes	 for	 PSPIKE	 in	 Fall	 2015	 –	 one	 in	 which	 the	 balance	 system	 is	 not	 formed	
explicitly	 and	 solved	using	 a	 preconditioned	 iterative	 scheme	 aimed	 at	 large‐scale	
parallel	architecture,	and	another	aimed	at	cluster	of	few	multicore	nodes	in	which	
the	 balance	 system	 is	 formed	 explicitly	 and	 solved	 directly.	 	 The	 TraceMIN	 and	
TraceMIN‐Davidson	 eigensolvers	 have	 already	 been	 adopted	 by	 the	 Trilinos	 project	
and	 the	 complete	 documentation	 and	 user	 manuals	 of	 these	 two	 codes	 will	 be	
available	this	coming	Fall	semester.	
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